Linear programming techniques for algorithms with applications in economics

نویسنده

  • Fei Chen
چکیده

of thesis entitled “Linear Programming Techniques for Algorithms with Applications in Economics” Submitted by Fei Chen for the degree of Doctor of Philosophy at The University of Hong Kong in March, 2014 We study algorithms and models for several economics-related problems from the perspective of linear programming. In network bargaining games, stable and balanced outcomes have been investigated in previous work. However, existence of such outcomes requires that the linear program relaxation of a certain maximum matching problem has integral optimal solution. We propose an alternative model for network bargaining games in which each edge acts as a player, who proposes how to split the weight of the edge among the two incident nodes. We show that the distributed protocol by Kanoria et. al can be modified to be run by the edge players such that the configuration of proposals will converge to a pure Nash Equilibrium, without the linear program integrality gap assumption. Moreover, ambiguous choices can be resolved in a way such that there exists a Nash Equilibrium that will not hurt the social welfare too much. In the oblivious matching problem, an algorithm aims to find a maximum matching while it can only makes (random) decisions that are essentially oblivious to the input graph. Any greedy algorithm can achieve performance ratio 0.5, which is the expected number of matched nodes to the number of nodes in a maximum matching. We revisit the Ranking algorithm using the linear programming framework, where the constraints of the linear program are given by the structural properties of Ranking. We use continuous linear program relaxation to analyze the limiting behavior as the finite linear program grows. Of particular interest are new duality and complementary slackness characterizations that can handle monotone constraints and mixed evolving and boundary constraints in continuous linear program, which enable us to achieve a theoretical ratio of 0.523 on arbitrary graphs. The J-choice K-best secretary problem, also known as the (J,K)-secretary problem, is a generalization of the classical secretary problem. An algorithm for the (J,K)-secretary problem is allowed to make J choices and the payoff to be maximized is the expected number of items chosen among the K best items. We use primal-dual continuous linear program techniques to analyze a class of infinite algorithms, which are general enough to capture the asymptotic behavior of the finite model with large number of items. Our techniques allow us to prove that the optimal solution can be achieved by a (J,K)-threshold algorithm, which has a nice “rational description” for the case K = 1. An abstract of exactly 390 words Linear Programming Techniques for Algorithms with Applications in Economics by Fei Chen Department of Computer Science The University of Hong Kong Supervised by Dr. Hubert Chan A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science at The University of Hong Kong

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Experimental Analysis of the Minimum Cost Flow Problem

In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...

متن کامل

Solving Fractional Programming Problems based on Swarm Intelligence

This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to s...

متن کامل

A nonlinear multi objective model for the product portfolio optimization: An integer programming

Optimization of the product portfolio has been recognized as a critical problem in industry, management, economy and so on. It aims at the selection of an optimal mix of the products to offer in the target market. As a probability function, reliability is an essential objective of the problem which linear models often fail to evaluate it. Here, we develop a multiobjective integer nonlinear cons...

متن کامل

Modified FGP approach and MATLAB program for solving multi-level linear fractional programming problems

In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors i...

متن کامل

The Calculation of the output price vectorby applying reverse linear programming: The novel approach in DEA

In the today’s world wherein every routine is based on economic factors, there is no doubt that theoretical sciences are driven by their capabilities and affordances in terms of economy. As a mathematical tool, data envelopment analysis (DEA) is provided to economics, so that one can investigate associated costs, prices and revenues of economic units. Data Envelopment Analysis (DEA) is a linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014